CoCoST: A Computational Cost Sensitive Classifier
نویسندگان
چکیده
Computational cost of classification is as important as accuracy in on-line classification systems. The computational cost is usually dominated by the cost of computing implicit features of the raw input data. Very few efforts have been made to design classifiers which perform effectively with limited computational power; instead, feature selection is usually employed as a pre-processing step to reduce the cost of running traditional classifiers. We present CoCoST, a novel and effective approach for building classifiers which achieve stateof-the-art classification accuracy, while keeping the expected computational cost of classification low, even without feature selection. CoCost employs a wide range of novel cost-aware decision trees, each of which is tuned to specialize in classifying instances from a subset of the input space, and judiciously consults them depending on the input instance in accordance with a cost-aware meta-classifier. Experimental results on a network flow detection application show that, our approach can achieve better accuracy than classifiers such as SVM and random forests, while achieving 75%-90% reduction in the computational costs. Keywords-Cost Efficient Decision Tree, Suppressed Cost, Inverse-Boosting, Meta-Classifier
منابع مشابه
Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملSupervised Machine Learning Under Test-Time Resource Constraints: A Trade-off Between Accuracy and Cost
OF THE DISSERTATION Supervised Machine Learning Under Test-Time Resource Constraints: A Trade-off Between Accuracy and Cost by Zhixiang (Eddie) Xu Doctor of Philosophy in Computer Science Washington University in St. Louis, 2014 Research Advisor: Professor Kilian Q. Weinberger, Chair The past decade has witnessed how the field of machine learning has established itself as a necessary component ...
متن کاملCost-Sensitive Classifier Evaluation Using Cost Curves
The evaluation of classifier performance in a cost-sensitive setting is straightforward if the operating conditions (misclassification costs and class distributions) are fixed and known. When this is not the case, evaluation requires a method of visualizing classifier performance across the full range of possible operating conditions. This talk outlines the most important requirements for cost-...
متن کاملAdversarial Cost-Sensitive Classification
In many classification settings, mistakes incur different application-dependent penalties based on the predicted and actual class labels. Costsensitive classifiers minimizing these penalties are needed. We propose a robust minimax approach for producing classifiers that directly minimize the cost of mistakes as a convex optimization problem. This is in contrast to previous methods that minimize...
متن کاملCombined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier
Combining the computational fluid dynamics (CFD) and the design of experiments (DOE) methods, as a mixed approach in modeling was proposed so that to simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier in an industrial scale. Effects of operating parameters including feed flow rate, solid content and baffle le...
متن کامل